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Abstract. In this paper we present many new families of identities for mul-

tiple harmonic sums using binomial coefficients. Some of these generalize a

few recent results of Hessami Pilehrood, Hessami Pilehrood and Tauraso [7].

As applications we prove several conjectures involving multiple zeta star val-

ues (MZSV): the Two-one formula conjectured by Ohno and Zudilin, and a

few conjectures of Imatomi et al. involving 2-3-2-1 type MZSV, where the

boldfaced 2 means some finite string of 2’s.

1. Introduction

For over two hundred years, Euler’s pioneering work on double zeta values [5] was

largely neglected, until in the early 1990s when Zagier showed the importance of the

more general multiple zeta values in his famous paper [25]. Since then these values

have come up in many areas of current research in mathematics and physics, such as

knot theory, motivic theory, mirror symmetry and Feynman integrals, to name just

a few. One of the central problems is to determine various Q-linear relations among

these values, many of which have been discovered numerically first and then proved

rigorously later. One such family that still defies a proof until now is the celebrated

Two-one formula discovered by Ohno and Zudilin [19].

The main goal of this paper is to give a comprehensive study of multiple zeta star

values of a few special types using the corresponding identities established first for

multiple harmonic sums. As one of the applications, we give a concise proof of the

Two-one formula.

We now recall some definitions. Let N be the set of natural numbers, Z the set

of integers, Z∗ the set of nonzero integers, and N0 = N ∪ {0}. For any ℓ ∈ N and

s = (s1, s2, . . . , sℓ) ∈ (Z∗)ℓ we define the (alternating) multiple harmonic sum (MHS for

short)

Hn(s1, s2, . . . , sℓ) =
∑

n≥k1>k2>...>kℓ≥1

ℓ∏

i=1

sgn(si)
ki

k
|si|
i

, (1)
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H⋆
n(s1, s2, . . . , sℓ) =

∑

n≥k1≥k2≥...≥kℓ≥1

ℓ∏

i=1

sgn(si)
ki

k
|si|
i

. (2)

This star-version has been denoted by Sn in the literature but it seems to be more

appropriate to use H⋆ in this paper due to its close connection with multiple zeta star

values to be defined momentarily. Conventionally, we call l(s) := ℓ the depth and |s| :=
∑ℓ

i=1 |si| the weight. For convenience we set Hn(s) = 0 if n < l(s), Hn(∅) = H⋆
n(∅) =

1 for all n ≥ 0, and {s1, s2, . . . , sℓ}
r the set formed by repeating the composition

(s1, s2, . . . , sℓ) exactly r times.

When s = (s1, s2, . . . , sℓ) ∈ (Z∗)ℓ with (s1, sgn(s1)) 6= (1, 1) we set, respectively, the

(alternating) Euler sum and the (alternating) star Euler sum by

ζ(s) = lim
n→∞

Hn(s), ζ⋆(s) = lim
n→∞

H⋆
n(s). (3)

When s ∈ Nℓ they are called the multiple zeta value (MZV) and the multiple zeta star

value (MZSV), respectively.

Notice that we have abused the notation in the definitions (1), (2) and (3) since all

these sums can be evaluated at negative integers, because, for example, a multiple zeta

function can be analytically continued to the whole complex space and it is possible

to define its values at negative integers [1, 27]. Hence throughout the paper we will

write n̄ whenever −n appears as an argument. For instance, we really should write ζ(2)

instead of ζ(−2) which usually means the Riemann zeta function at −2.

We now state the Two-one formula conjectured by Ohno and Zudilin [19].

Theorem 1.1. Let r ∈ N and s = ({2}a1 , 1, . . . , {2}ar , 1) where a1 ∈ N and aj ∈ N0

for all j ≥ 2. Then we have

ζ⋆(s) =
∑

p

2ℓ(p)ζ(p),

where p runs through all indices of the form (2a1 + 1) ◦ · · · ◦ (2ar + 1) with “◦” being

either the symbol “,” or the symbol “+”.

Until recently, not many nontrivial families of identities relating MZVs or MZSVs

with truly alternating Euler sums have been proved. One such result is proved by

Zlobin [32]

ζ⋆({2}n) = −2ζ(2n) for all n ≥ 1. (4)

Another is proved in [30]: ζ({3}n) = 8nζ({2, 1}n). Recently, two more appear as (27)

and (28) of [7] one of which yields a new proof of an identity of [26]. Notice that [7,

(22)] implies (4) easily (see Lemma 4.1). To provide more such families in this paper we

need some book-keeping first. A boldface of a single digit number means the number

is repeated a few times. We underline a string pattern to mean the whole pattern is

repeated. Thus the Two-one formula should be written as 2-1 formula and in each

repetition the 2’s may have different lengths.
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Besides the 2-1 formula in Theorem 1.1 we show many analogous formulas in this

paper. For ease of reference we list them as follows:

(1) 2-1: §2 for MHS, §4 for MZSV;

(2) 2-1-2 (nontrivial substring 2 at the end): §2 for MHS, §4 for MZSV;

(3) 2-c-2 (c ≥ 3 and 2 at the end may be trivial): to appear in a joint work with

my student Erin Linebarger [16];

(4) 2-c-2-1: §5 for MHS and MZSV;

(5) 2-c-2-1-2 (nontrivial 2 at the end): §6 for MHS and MZSV;

(6) 2-1-2-c-2-1: §5 for MHS and MZSV;

(7) 2-1-2-c-2-1-2 (nontrivial 2 at the end): §6 for MHS and MZSV;

(8) 2-1-2-c-2 (2 at the end may be trivial): §7 for MHS and MZSV;

(9) 2-c-2-1-2-c-2 (2 at the end may be trivial): §7 for MHS and MZSV;

(10) 1-c-1 (c ≥ 1 and 1 at the end may be trivial): §10 for MHS.

For example, the following is the 2-1-2 formula.

Theorem 1.2. Let r ∈ N and s = ({2}a1, 1, . . . , {2}ar , 1, {2}ar+1) where a1, ar+1 ∈ N

and aj ∈ N0 for all 2 ≤ j ≤ r. Then we have

ζ⋆(s) = −
∑

p

2ℓ(p)ζ(p),

where p runs through all indices of the form (2a1 + 1) ◦ · · · ◦ (2ar + 1) ◦ 2ar+1 with “◦”

being either the symbol “,” or the symbol O-plus “⊕” defined by

a⊕ b = sgn(a)b+ sgn(b)a for all a, b ∈ Z∗. (5)

When r = 2, we have checked numerically the following identities for all 0 ≤ a, b, c ≤ 2

and ac 6= 0 with the help of EZ-face [3]:

ζ⋆({2}a, 1, {2}b, 1, {2}c) =− 2ζ(2(a+ b+ c) + 2)− 4ζ(2a+ 2 + 2b, 2c)

− 4ζ(2a+ 1, 2b+ 1 + 2c)− 8ζ(2a+ 1, 2b+ 1, 2c).

One of the main results contained in [7, Theorem 2.3] is the following theorem.

Theorem 1.3. ([7, Theorem 2.3]) Let a ∈ N0 and b ∈ N. Then for any n ∈ N

H⋆
n({2}

a, 1) = 2

n∑

k=1

(
n

k

)

k2a+1
(
n+k

k

) , (A)

H⋆
n({2}

a, 1, {2}b) = −2

n∑

k=1

(−1)k
(
n

k

)

k2a+1+2b
(
n+k

k

) − 4

n∑

k=1

Hk−1(2b)
(
n

k

)

k2a+1
(
n+k

k

) . (B)

We want to caution the reader that the convention of index ordering in [7] is opposite

to ours in the definitions (1) and (2) of MHS. This is the reason why a and b in

Theorem 1.3(B) is switched from the original statement in [7, Theorem 2.3].

Theorems 2.1 and 2.3 generalize Theorem 1.3(A) and (B) respectively by allowing

the arguments to contain an arbitrary number of 2-strings, which lead to the 2-1 and
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2-1-2 formulas for MHS. The proofs are straight-forward, however, the difficult part is

the discovery of the theorems (using a lot of Maple experiments). By taking limits in

these two theorems so that MHS become MZSV we can prove the 2-1 formula and the

2-1-2 formula for MZSV in Theorems 1.1 and 1.2, respectively.

In §8 and §9 we provide new and concise proofs of a few conjectures first formulated

by Imatomi et al. in [13] concerning MZSV of types 2-3-2-1 and 2-3-2-1-2.

In the last section we propose a few possible future research directions, one of which

will be carried out in a sequel to this work in which we will study congruence properties

of MHS as further applications of the results we have obtained in this paper.

Acknowledgement. We would like to thank Roberto Tauraso for sending us their

preprint [7]. This work is partially supported by NSF grant DMS1162116 which enables

me to work with my students more productively. In particular, this paper is inspired

by a recent collaboration with one of my students, Erin Linebarger [16]. We are able to

generalize Theorems 2.1 of [7] to arbitrary number of strings of 2’s using similar ideas

contained in this paper.

2. MHS identities: 2-1 formula and 2-1-2 formula

To state our main theorems we need some additional notations first. For s =

(s1, . . . , sm) ∈ (Z∗)m we define the mollified companion of Hn(s) by

Hn(s) :=
∑

n≥k1>···>km≥1

(
n

k1

)

(
n+k1
k1

)

m∏

j=1

sgn(sj)
kj

k
|sj |
j

=

n∑

k=1

sgn(s1)
k

k|s1|

(
n

k

)

(
n+k

k

) Hk−1(s2, . . . , sm). (6)

We further define Π(s) to be the set of all indices of the form (s1 ◦ · · · ◦ sm) where “◦”

being either the symbol “,” or the symbol O-plus“⊕” defined by (5).

The following result generalizes Theorem 1.3(A).

Theorem 2.1. Let r ∈ N and s = ({2}a1 , 1, . . . , {2}ar , 1) where a1 ∈ N and aj ∈ N0

for all j ≥ 2. Then we have

H⋆
n(s) = −

∑

p∈Π(2a1+1,...,2ar+1)

2ℓ(p)Hn(p).

Remark 2.2. (a). When r = 1 our Theorem 2.1 becomes Theorem 1.3(A).

(b). When r = 2 we get: for all n ∈ N and a, b ∈ N0

H⋆
n({2}

a, 1, {2}b, 1) = 2

n∑

k=1

(
n

k

)

k2(a+b)+2
(
n+k

k

) + 4

n∑

k=1

Hk−1(2b+ 1)
(
n

k

)

k2a+1
(
n+k

k

) .
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When r = 3 we have: for all n ∈ N and a, b, c ∈ N0

H⋆
n({2}

a, 1, {2}b, 1, {2}c, 1) = 2
n∑

k=1

(
n

k

)

k2(a+b+c)+3
(
n+k

k

) + 4
n∑

k=1

Hk−1(2c+ 1)
(
n

k

)

k2a+2b+2
(
n+k

k

)

+ 4
n∑

k=1

Hk−1(2b+ 2c+ 2)
(
n

k

)

k2a+1
(
n+k

k

) + 8
n∑

k=1

Hk−1(2b+ 1, 2c+ 1)
(
n

k

)

k2a+1
(
n+k

k

) .

Using Maple we have verified both formulas numerically for a, b, c ≤ 5 and n ≤ 100.

We now generalize Theorem 1.3(B).

Theorem 2.3. Suppose r ∈ N0 and s = ({2}a1, 1, . . . , {2}ar , 1, {2}ar+1) where aj ∈ N0

for all j ≤ r and ar+1 ∈ N. Then we have

H⋆
n(s) = −

∑

p∈Π(2a1+1,...,2ar+1,2ar+1)

2ℓ(p)Hn(p).

Remark 2.4. When r = 0 Theorem 2.3 implies [7, (19)]. When r = 1 Theorem 2.3

becomes Theorem 1.3(B). When r = 2 we get the following: for all n, c ∈ N and

a, b ∈ N0

H⋆
n({2}

a, 1, {2}b, 1, {2}c) = −2
n∑

k=1

(−1)k
(
n

k

)

k2(a+b+c)+2
(
n+k

k

) − 4
n∑

k=1

Hk−1(2c)
(
n

k

)

k2a+2b+2
(
n+k

k

)

− 4
n∑

k=1

Hk−1(2b+ 1 + 2c)
(
n

k

)

k2a+1
(
n+k

k

) − 8
n∑

k=1

Hk−1(2b+ 1, 2c)
(
n

k

)

k2a+1
(
n+k

k

) . (7)

3. A combinatorial lemma

In this short section we prove the following combinatorial identities which are similar

in spirit to [7, Lemma 2.2]. We will need these results several times throughout this

paper.

Lemma 3.1. Let k, n ∈ N, a ∈ N0, A
(m)
n,k = (−1)k

(
mn

n−k

)
c
(m)
n where c

(m)
n is an arbitrary

sequence independent of k, and B
(m)
n,k =

(
mn

n−k

)
c
(m)
n . Suppose a ∈ N0 and c ∈ N. Then

(i) We have

1

nc

n∑

k=1

Hk−1(v)A
(m)
n,k

ka
=

n∑

k=1

Hk−1(v)A
(m)
n,k

ka+c
+

∑

j+|x|=a+c

j≥0,xr>a

ml(x)

n∑

k=1

Hk−1(x,v)A
(m)
n,k

kj
, (8)

where xr denotes the last component of x ∈ Nr.

(ii) We have

n

n∑

k=1

Hk−1(v)B
(2)
n,k

ka
=

n∑

k=1

Hk−1(v)B
(2)
n,k

ka−1
+ 2

n∑

k=1

Hk−1(a,v)kB
(2)
n,k. (9)
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(iii) We have

1

nc

n∑

k=1

Hk−1(v)B
(m)
n,k

ka
=

n∑

k=1

Hk−1(v)B
(m)
n,k

ka+c
+

∑

j+|x|=a+c

j≥0,xr<−a

ml(x)

n∑

k=1

Hk−1(x,v)A
(m)
n,k

kj
, (10)

where xr denotes the last component of x ∈ Nr−1 × Z∗.

(iv) We have

n
n∑

k=1

Hk−1(v)A
(2)
n,k

ka
=

n∑

k=1

Hk−1(v)A
(2)
n,k

ka−1
+ 2

n∑

k=1

Hk−1(a,v)kB
(2)
n,k. (11)

Proof. We need to mention again that the ordering is reversed in this paper so s1 in [7,

Lemma 2.2] should be the last component of x in our setup. Now, equation (8) follows

from [7, Lemma 2.2] directly. We may also use this proof for (10) by taking the sign of

xr into consideration.

Now by the identity proved in [7, Lemma 2.1]

2
n∑

k=l+1

k
(
n

k

)

(
n+k

k

) =
n
(
n−1
l

)

(
n+l

l

) =
(n− l)

(
n

l

)

(
n+l

l

) (12)

we see that

2
n∑

k=1

Hk−1(a,v)kB
(2)
n,k =

n∑

l=1

Hl−1(v)

la

n∑

k=l+1

2kB
(2)
n,k

=
n∑

l=1

Hl−1(v)

la
(n− l)B

(2)
n,l

= n
n∑

l=1

Hl−1(v)B
(2)
n,l

la
−

n∑

l=1

Hl−1(v)B
(2)
n,l

la−1

which is (9). Similar argument yields (11). We leave the details to the interested

reader. �

Remark 3.2. In this paper we will always choose c
(1)
n = 1 so that A

(1)
n,k =

(
n

k

)
and

c
(2)
n = (n!)2/(2n)! so that A

(2)
n,k =

(
n

k

)
/
(
n+k

k

)
.

4. Proof of Theorems 2.1 and 2.3, 2-1 and 2-1-2 formulas

In the case n = 1 both statements in Theorems 2.1 and 2.3 become 1 = 1 trivially.

We now assume n ≥ 2. By definition, for s = ({2}a1, 1, . . . , {2}ar , 1) we have

H⋆
n(s) =

a1∑

l=0

1

n2a1−2l
H⋆

n−1({2}
l, 1, {2}a2, 1, . . . , {2}ar , 1)

+
1

n2a1+1
H⋆

n({2}
a2 , 1, . . . , {2}ar , 1).
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By induction on r + n we see that

H⋆
n(s) =

a1∑

l=0

1

n2a1−2l

∑

q∈Π(2l+1,2a2+1,...,2ar+1)

2ℓ(q)Hn−1(q)

+
1

n2a1+1

∑

p∈Π(2a2+1,...,2ar+1)

2ℓ(p)Hn(p)

=

a1∑

l=0

1

n2a1−2l

∑

(q1,...,qm)∈Π(1,2a2+1,...,2ar+1)

2m
n−1∑

k=1

1

k2l+q1

(
n−1
k

)

(
n−1+k

k

) Hk−1(q2, . . . , qm)

+
1

n2a1+1

∑

p∈Π(2a2+1,...,2ar+1)

2ℓ(p)Hn(p)

By changing the order of summations and using the identity

a1∑

l=0

(n

k

)2l

=
1

k2a1
·
n2a1+2 − k2a1+2

(n− k)(n+ k)
(13)

we see easily that

H⋆
n(s) =

∑

(q1,...,qm)∈Π(1,2a2+1,...,2ar+1)

n∑

k=1

(

1−
k2a1+2

n2a1+2

) 2m

k2a1+q1

(
n

k

)

(
n+k

k

) Hk−1(q2, . . . , qm)

+
1

n2a1+1

∑

p∈Π(2a2+1,...,2ar+1)

2ℓ(p)Hn(p)

=
∑

p∈Π(2a1+1,2a2+1,...,2ar+1)

2ℓ(p)Hn(p) +
∑

(a,v)∈Π(2a2+1,...,2ar+1)

2ℓ(v)+1·

·

(

n
n∑

k=1

Hk−1(v)
(
n

k

)

ka
(
n+k

k

) −
n∑

k=1

Hk−1(v)
(
n

k

)

ka−1
(
n+k

k

) − 2
n∑

k=1

kHk−1(a,v)
(
n

k

)

(
n+k

k

)

)

. (14)

Here the middle (resp. the last) term of (14) is obtained by taking (q1, . . . , qm) = (1 +

a,v) (resp. (q1, . . . , qm) = (1, a,v). Notice the expression inside the pair of parentheses

above vanishes by (9) of Lemma 3.1. This completes the proof of Theorem 2.1. Exactly

the same argument works almost word for word for Theorem 2.3 so we leave the details

to the interested reader.

We can now prove Theorems 1.1 and 1.2 by using Theorems 2.1 and 2.3 and the

following key lemma proved in [16].

Lemma 4.1. [16, Lemma 4.2] Let d ∈ N0 and let e be a real number with e > 1. Then

for all s ∈ (Z∗)d (s = ∅ if d = 0) we have

lim
n→∞

n∑

k=1

|Hk−1(s)|

ke

(

1−

(
n

k

)

(
n+k

k

)

)

= 0. (15)
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Proof of Theorem 1.1 and Theorem 1.2. We observe that in Theorem 2.1 the first

component ≥ 2a1 + 1 ≥ 3, and in Theorem 2.3 the absolute value of first component

≥ 2a1 + 1 ≥ 3. Therefore both theorems follow from Lemma 4.1 immediately. �

Remark 4.2. In [24] Yamamoto considers some algebraic structures depending on a

variable t which reflect the properties of MZV and MZSV when t = 0 and t = 1, respec-

tively. As he pointed out [23, Conjecture 4.4] the validity of the 2-1 formula Theorem 1.1

implies that the the algebra structure of MZSVs of the form ζ⋆({2}a1 , 1, . . . , {2}ar , 1) is

reflected by setting t = 1/2.

5. MHS and MZSV identities: 2-c-2-1 formula or 2-1-2-c-2-1 formula

In this and the next three sections we utilize the ideas in the previous sections to

derive more MHS identities involving arguments of ({2}a, 1)-type alternating with those

of ({2}b, c)-type (c ≥ 3). In this section, we start by considering strings ending with

({2}a, 1)-type. As before, we study the MHS first and then derive the corresponding

MZSV identities by invoking Lemma 4.1.

Theorem 5.1. Let aj , bj , cj − 3 ∈ N0 for all j ≥ 0. Then

(2-c-2-1): For s = ({2}b1, c1, {2}
a1, 1, . . . , {2}br , cr, {2}

ar , 1), r ≥ 1, we have

H⋆
n(s) =

∑

p∈Π(2b1+2, {1}c1−3, 2a1+2, ..., 2br+2, {1}cr−3, 2ar+2)

2ℓ(p)Hn(p).

(2-1-2-c-2-1): For s = ({2}a0, 1, {2}b1, c1, {2}
a1, 1, . . . , {2}br , cr, {2}

ar , 1), r ≥ 0, we

have

H⋆
n(s) =

∑

p∈Π(2a0+1, 2b1+2,{1}c1−3, 2a1+2, ..., 2br+2, {1}cr−3, 2ar+2)

2ℓ(p)Hn(p).

Proof. We proceed by induction on n. When n = 1 the theorem is clear. Assume now

the theorem is true for all n + r ≤ N where N ≥ 2. Suppose we have n ≥ 2 and

n+ r = N +1. Let s = ({2}b1 , c1, {2}
a1, 1, . . . , {2}br , cr, {2}

ar , 1). We have by definition

H⋆
n(s) =

b1∑

l=0

1

n2b1−2l
H⋆

n−1({2}
l, c1, {2}

a1, 1, {2}b2, . . . , {2}br , cr, {2}
ar , 1)

+
1

n2b1+c1
H⋆

n({2}
a1 , 1, {2}b2, c2, {2}

a2 , 1, . . . , {2}br , cr, {2}
ar , 1).

For ease of reading we define the following index sets: for any composition v of integers

I(v) =J(v, {1}c1−3, 2a1 + 2),

J(v) =Π(v, 2b2 + 2, {1}c2−3, 2a2 + 2, . . . , 2br + 2, {1}cr−3, 2ar + 2).
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Then by induction assumption

H⋆
n(s) =

b1∑

l=0

1

n2b1−2l

∑

q∈I(2l+2)

2ℓ(q)Hn−1(q) +
1

n2b1+c1

∑

p∈J(2a1+1)

Hn(p)

=
∑

(q1,...,qm)∈I(2)

b1∑

l=0

2m

n2b1−2l

n−1∑

k=1

sgn(q1)
k

k2l+|q1|

(
n−1
k

)

(
n−1+k

k

) Hk−1(q2, . . . , qm)

+
1

n2b1+c1

∑

p∈J(2a1+1)

2ℓ(p)Hn(p),

By changing the order of summations and using the identity (13) we see easily that

H⋆
n(s) =

∑

(q1,...,qm)∈I(2b1+2)

2m
n∑

k=1

sgn(q1)
k

k|q1|

(

1−
k2b1+2

n2b1+2

)
(
n

k

)

(
n+k

k

) Hk−1(q2, . . . , qm)

+
1

n2b1+c1

∑

p∈J(2a1+1)

2ℓ(p)Hn(p).

Notice that the index set

I(2b1 + 2) =
⋃

(p1,...,pm)∈J(2a1+1)

{(
2b1 + 2 ◦ 1 ◦ · · · ◦ 1

︸ ︷︷ ︸

c1−3 times

◦(1̄⊕ p1), . . . , pm
)}

. (16)

For each (p1, . . . , pm) we can partition the set (16) into the following subsets:
{(

(2b1 + c1)⊕ p1,v
)}

∪
{(

j + 2 + 2b1,x, ī⊕ p1,v
)}

, v = (p2, . . . , pm),

for i ≥ 1, j ≥ 0 and positive compositions y with i + j + |y| = c1 − 2. We have two

cases: (i) p1 > 0 and (ii) p1 < 0. Set a = |p1|. It suffices to prove that in case (i)

2l(y)+1
∑

i+j+|y|=c1−2,
i≥1,j≥0

n∑

k=1

Hk−1(y, i+ a,v)(−1)k
(
n

k

)

kj
(
n+k

k

)

=
1

nc1−2

n∑

k=1

Hk−1(v)
(
n

k

)

ka
(
n+k

k

) −
n∑

k=1

Hk−1(v)
(
n

k

)

kc1+a−2
(
n+k

k

) , (17)

and in case (ii)

2l(y)+1
∑

i+j+|y|=c1−2,
i≥1,j≥0

n∑

k=1

Hk−1(y, i+ a,v)(−1)k
(
n

k

)

kj
(
n+k

k

)

=
1

nc1−2

n∑

k=1

Hk−1(v)(−1)k
(
n

k

)

ka
(
n+k

k

) −
n∑

k=1

Hk−1(v)(−1)k
(
n

k

)

kc1+a−2
(
n+k

k

) . (18)
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Equation (17) follows from (10) of Lemma 3.1 when c = c1−2,m = 2 and x = (y, i+ a).

Equation (18) follows from (8) with the same choice of parameters except x = (y, i+a).

This proves case (2-c-2-1) when r + n = N + 1.

Now we turn to case (2-1-2-c-2-1). Let s = ({2}a0, 1, {2}b1, c1, {2}
a1, 1, . . . , {2}br , cr,

{2}ar , 1). By definition

H⋆
n(s) =

a0∑

l=0

1

n2a0−2l
H⋆

n−1({2}
l, 1, {2}b1, c1, {2}

a1, 1, . . . , {2}br , cr, {2}
ar , 1)

+
1

n2a0+1
H⋆

n({2}
b1, c1, {2}

a1, 1, . . . , {2}br , cr, {2}
ar , 1).

For ease of reading, for any composition v of integers we set

K(v) = Π(v, 2b1 + 2, {1}c1−3, 2a1 + 2, . . . , 2br + 2, {1}cr−3, 2ar + 2).

By the induction assumption and the fact that we have just proved the case (2-c-2-1)

with r + n = N + 1 we see that

H⋆
n(s) =

a0∑

l=0

1

n2a0−2l

∑

q∈K(2l+1)

2ℓ(q)Hn−1(q) +
1

n2a0+1

∑

p∈K(∅)

2ℓ(p)Hn(p)

=
∑

(q1,...,qm)∈K(1)

a0∑

l=0

2m

n2a0−2l

n−1∑

k=1

sgn(q1)
k

k2l+|q1|

(
n−1
k

)

(
n−1+k

k

) Hk−1(q2, . . . , qm)

+
1

n2a0+1

∑

p∈K(∅)

2ℓ(p)Hn(p).

By changing the order of summations and using the identity (13) we get

H⋆
n(s) =

∑

(q1,...,qm)∈K(2a0+1)

2m
n∑

k=1

(

1−
k2a0+2

n2a0+2

)sgn(q1)
k

k|q1|

(
n

k

)

(
n+k

k

) Hk−1(q2, . . . , qm)

+
1

n2a0+1

∑

p∈K(∅)

2ℓ(p)Hn(p).

Notice that the partition of the index set

K(2a0 + 1) =
⋃

(p1,...,pm)∈K(∅)

{(
2a0 + 1, p1,v

)}

∪
{(

(2a0 + 1)⊕ p1,v
)}

,

where v = (p2, . . . , pm). For each (p1, . . . , pm) we have two cases: (i) p1 > 0 and (ii)

p1 < 0. Set a = |p1|. It suffices to prove that in case (i)

n
n∑

k=1

Hk−1(v)
(
n

k

)

ka
(
n+k

k

) − 2
n∑

k=1

kHk−1(a,v)
(
n

k

)

(
n+k

k

) −
n∑

k=1

Hk−1(v)
(
n

k

)

ka−1
(
n+k

k

) = 0

by (9) of Lemma 3.1, and in case (ii)

n

n∑

k=1

Hk−1(v)(−1)k
(
n

k

)

ka
(
n+k

k

) − 2

n∑

k=1

kHk−1(a,v)
(
n

k

)

(
n+k

k

) −
n∑

k=1

Hk−1(v)(−1)k
(
n

k

)

ka−1
(
n+k

k

) = 0
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by (11) of Lemma 3.1. This proves case (2-1-2-c-2-1) when r + n = N + 1.

We have completed the proof of Theorem 5.1. �

When r = 1 we get the following: for all n ∈ N and a, b ∈ N0

H⋆
n({2}

b, 3, {2}a, 1) = 2
n∑

k=1

(
n

k

)

k2(b+a)+4
(
n+k

k

) + 4
n∑

k=1

(−1)kHk−1(2a+ 2)
(
n

k

)

k2b+2
(
n+k

k

) , (19)

in case (2-c-2-1), and in case (2-1-2-c-2-1)

H⋆
n({2}

a1 , 1,{2}b, 3, {2}a2, 1) (20)

=2
n∑

k=1

(
n

k

)

k2(a1+b+a2+5)
(
n+k

k

) + 4
n∑

k=1

Hk−1(2b+ 2a2 + 4)
(
n

k

)

k2a1+1
(
n+k

k

)

+4
n∑

k=1

(−1)kHk−1(2a2 + 2)
(
n

k

)

k2a1+2b+3
(
n+k

k

) + 8
n∑

k=1

Hk−1(2b+ 2, 2a2 + 2)
(
n

k

)

k2a1+1
(
n+k

k

) .

Theorem 5.2. Let r ∈ N and aj , bj, cj − 3 ∈ N0 for all j ≥ 1. Then

(2-c-2-1): For s = ({2}b1, c1, {2}
a1, 1, . . . , {2}br , cr, {2}

ar , 1), r ≥ 1, we have

ζ⋆(s) =
∑

p∈Π(2b1+2, {1}c1−3, 2a1+2, ..., 2br+2, {1}cr−3, 2ar+2)

2ℓ(p)ζ(p). (21)

(2-1-2-c-2-1): For s = ({2}a0, 1, {2}b1, c1, {2}
a1, 1, . . . , {2}br , cr, {2}

ar , 1), r ≥ 0 and

a0 ≥ 1, we have

ζ⋆(s) =
∑

p∈Π(2a0+1, 2b1+2,{1}c1−3, 2a1+2, ..., 2br+2, {1}cr−3, 2ar+2)

2ℓ(p)ζ(p). (22)

Proof. This follows from Theorem 5.1 and Lemma 4.1 easily. �

For example, by (19) and (20) we see that

ζ⋆({2}b, 3, {2}a, 1) = 2ζ(2a+ 2b+ 4) + 4ζ(2b+ 2, 2a+ 2), (23)

and

ζ⋆({2}a1, 1, {2}b, 3, {2}a2, 1) = 2ζ(2(a1 + b+ a2) + 5) + 4ζ(2a1 + 1, 2b+ 2a2 + 4)

+ 4ζ(2a1 + 2b+ 3, 2a2 + 2) + 8ζ(2a1 + 1, 2b+ 2, 2a2 + 2).

6. MHS and MZSV identities: 2-c-2-1-2 and 2-1-2-c-2-1-2 formula

We continue to study MHS identities involving arguments of ({2}a, 1)-type alter-

nating with those of ({2}b, c)-type (c ≥ 3). Now we consider strings ending with

({2}a, 1)-type trailed by a non-empty substring of 2’s at the very end.

Theorem 6.1. Let t, r ∈ N and aj, bj , cj − 3 ∈ N0 for all j ≥ 1. Then

(2-c-2-1-2). For s = ({2}b1, c1, {2}
a1 , 1, . . . , {2}br , cr, {2}

ar , 1, {2}t) we have

H⋆
n(s) = −

∑

p∈Π(2b1+2, {1}c1−3, 2a1+2, ..., 2br+2, {1}cr−3, 2ar+2,2t)

2ℓ(p)Hn(p).
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(2-1-2-c-2-1-2). For s = ({2}a0, 1, {2}b1, c1, {2}
a1, 1, . . . , {2}br , cr, {2}

ar , 1, {2}t), r ≥

0, we have

H⋆
n(s) = −

∑

p∈Π(2a0+1, 2b1+2,{1}c1−3, 2a1+2, ..., 2br+2, {1}cr−3, 2ar+2,2t)

2ℓ(p)Hn(p).

Proof. The proof is very similar to the proof of Theorem 5.1. Thus we leave it to the

interested reader. �

By taking n → ∞ and using Lemma 4.1 we get immediately the following results.

Theorem 6.2. Let t, r ∈ N and aj, bj , cj − 3 ∈ N0 for all j ≥ 1. Then

(2-c-2-1-2). For s = ({2}b1, c1, {2}
a1 , 1, . . . , {2}br , cr, {2}

ar , 1, {2}t), r ≥ 1, we have

ζ⋆(s) = −
∑

p∈Π(2b1+2, {1}c1−3, 2a1+2, ..., 2br+2, {1}cr−3, 2ar+2,2t)

2ℓ(p)ζ(p). (24)

(2-1-2-c-2-1-2): For s = ({2}a0, 1, {2}b1, c1, {2}
a1, 1, . . . , {2}br , cr, {2}

ar , 1, {2}t), r ≥

0 and a0 ≥ 1, we have

ζ⋆(s) = −
∑

p∈Π(2a0+1, 2b1+2,{1}c1−3, 2a1+2, ..., 2br+2, {1}cr−3, 2ar+2,2t)

2ℓ(p)ζ(p). (25)

For example, taking r = 1 and c1 = 3 we get in case (2-c-2-1-2)

ζ⋆({2}b, 3, {2}a, 1, {2}t) = −2ζ(2b+ 2a+ 2t+ 4)− 4ζ(2b+ 2a+ 4, 2t)

−4ζ(2b+ 2, 2a+ 2t+ 2)− 8ζ(2b+ 2, 2a+ 2, 2t),

and in case (2-1-2-c-2-1-2)

ζ⋆({2}a1 , 1, {2}b, 3, {2}a2, 1, {2}t)

=− 2ζ(2a1 + 2b+ 2a2 + 2t+ 5)− 4ζ(2a1 + 2b+ 2a2 + 5, 2t)

− 4ζ(2a1 + 2b+ 3, 2a2 + 2t+ 2)− 8ζ(2a1 + 2b+ 3, 2a2 + 2, 2t)

− 4ζ(2a1 + 1, 2b+ 2a2 + 2t+ 4)− 8ζ(2a1 + 1, 2b+ 2a2 + 4, 2t)

− 8ζ(2a1 + 1, 2b+ 2, 2a2 + 2t+ 2)− 16ζ(2a1 + 1, 2b+ 2, 2a2 + 2, 2t).

We have verified these formulas numerically for a1, a2, a, b, t ≤ 2 using EZ-face [3].

7. MHS identities: 2-1-2-c-2 formula and 2-c-2-1-2-c-2 formula

In this section we continue the theme in the preceding sections by deriving more MHS

identities involving compositions of ({2}a, 1)-type alternating with those of ({2}b, c)-

type (c ≥ 3). This time we consider strings ending with ({2}a, c)-type trailed by {2}t

(this tail may be empty). We can then derive the corresponding MZSV identities by

applying Lemma 4.1. We omit the proofs since they are essentially the same as those

of Theorem 5.1 and Theorem 5.2.
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Theorem 7.1. Let r ∈ N and t, aj, bj , cj − 3 ∈ N0 for all j ≥ 1. Then

(2-1-2-c-2). For s = ({2}a1 , 1, {2}b1, c1, . . . , {2}
ar , 1, {2}br , cr, {2}

t), we have

H⋆
n(s) = −

∑

p∈Π(2a1+1, 2b1+2, {1}c1−3, 2a2+2, ..., 2ar+2, 2br+2, {1}cr−3, 2t+1)

2ℓ(p)Hn(p).

(2-c-2-1-2-c-2). For s = ({2}b1, c1, {2}
a1 , 1, . . . , {2}br , cr, {2}

ar , 1, {2}br+1, cr+1, {2}
t)

we have

H⋆
n(s) = −

∑

p∈Π(2b1+2,{1}c1−3, 2a1+2, ..., 2ar+2, 2br+1+2, {1}cr+1−3, 2t+1)

2ℓ(p)Hn(p).

Setting r = 0 in Theorem 7.1 we recover [7, Theorem 2.1]. When r = 1 and t = 0 we

get the following: for all n ∈ N and a, b ∈ N0

H⋆
n({2}

a, 1, {2}b, 3) =− 2

n∑

k=1

(−1)k
(
n

k

)

k2(a+b)+4
(
n+k

k

) − 4

n∑

k=1

Hk−1(2b+ 3)
(
n

k

)

k2a+1
(
n+k

k

)

−4

n∑

k=1

Hk−1(1)(−1)k
(
n

k

)

k2a+2b+3
(
n+k

k

) − 8

n∑

k=1

Hk−1(2b+ 2, 1)
(
n

k

)

k2a+1
(
n+k

k

)

in case (2-1-2-c-2), and in case (2-c-2-1-2-c-2):

H⋆
n({2}

b1 , 3, {2}a, 1, {2}b2, 3) = −2
n∑

k=1

(−1)k
(
n

k

)

k2(b1+a+b2)+7
(
n+k

k

) − 4
n∑

k=1

Hk−1(2b2 + 3)
(
n

k

)

k2b1+2a+4
(
n+k

k

)

−4
n∑

k=1

Hk−1(2a+ 2b2 + 5)(−1)k
(
n

k

)

k2b1+2
(
n+k

k

) − 8
n∑

k=1

Hk−1(2a+ 2, 2b2 + 3)(−1)k
(
n

k

)

k2b1+2
(
n+k

k

)

−4
n∑

k=1

Hk−1(1)(−1)k
(
n

k

)

k2b1+2a+2b2+6
(
n+k

k

) − 8
n∑

k=1

Hk−1(2a+ 2b2 + 4, 1)(−1)k
(
n

k

)

k2b1+2
(
n+k

k

)

−8
n∑

k=1

Hk−1(2b2 + 2, 1)
(
n

k

)

k2b1+2a+4
(
n+k

k

) − 16
n∑

k=1

Hk−1(2a+ 2, 2b2 + 2, 1)(−1)k
(
n

k

)

k2b1+2
(
n+k

k

) .

By taking n → ∞ in Theorem 7.1 and using Lemma 4.1 we obtain

Theorem 7.2. Let r ∈ N and aj , bj, cj − 3 ∈ N0 for all j ≥ 1. Then

(2-1-2-c-2). For s = ({2}a1 , 1, {2}b1, c1, . . . , {2}
ar , 1, {2}br , cr, {2}

t) with a1 ≥ 1, we

have

ζ⋆(s) = −
∑

p∈Π(2a1+1, 2b1+2, {1}c1−3, 2a2+2, ..., 2ar+2, 2br+2, {1}cr−3, 2t+1)

2ℓ(p)ζ(p). (26)

(2-c-2-1-2-c-2). For s = ({2}b1, c1, {2}
a1 , 1, . . . , {2}br , cr, {2}

ar , 1, {2}br+1, cr+1, {2}
t)

we have

ζ⋆(s) = −
∑

p∈Π(2b1+2,{1}c1−3, 2a1+2, ..., 2ar+2, 2br+1+2, {1}cr+1−3, 2t+1)

2ℓ(p)ζ(p). (27)
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For example, taking r = 1 and t = 0 in case (2-1-2-c-2) we get

ζ⋆({2}a, 1, {2}b, 3) =− 2ζ(2a+ 2b+ 4)− 4ζ(1 + 2a, 2b+ 3)

−4ζ(2a+ 2b+ 3, 1)− 8ζ(2a+ 1, 2b+ 2, 1).

and in case (2-c-2-1-2-c-2) we get

ζ⋆({2}b1, 3, {2}a, 1, {2}b2, 3)

=− 2ζ(2(b1 + a+ b2) + 7)− 4ζ(2b1 + 2a+ 4, 2b2 + 3)

− 4ζ(2b1 + 2, 2a+ 2b2 + 5)− 4ζ(2b1 + 2a+ 2b2 + 6, 1)

− 8ζ(2b1 + 2, 2a+ 2, 2b2 + 3)− 8ζ(2b1 + 2, 2a+ 2b2 + 4, 1)

− 8ζ(2b1 + 2a+ 4, 2b2 + 2, 1)− 16ζ(2b1 + 2, 2a+ 2, 2b2 + 2, 1).

We have numerically verified these formulas with a, b1, b2 ≤ 2 using EZ-face [3].

8. Conjectures of Imatomi et al. on MZSV of type

2-3-2-1 and 2-3-2-1-2-1

Throughout this section the notations of §5 and §6 are still in force. The following

Theorem 8.2 was first conjectured by Imatomi et al. [13, Conjectures 4.1 and 4.3].

Special cases have been proved in [13, Theorem 1.1] and by Tasaka and Yamamoto in

[21]. Yamamoto proves a more precise version in [23]. We now give a different and

concise proof using the identities we have found in the last two sections. We begin with

a lemma first.

Lemma 8.1. Let n1, . . . , nℓ ∈ Z∗ be ℓ even integers and m = |n1|+ · · ·+ |nℓ|. Then
∑

g∈Sℓ

ζ
(
ng(1), . . . , ng(ℓ)

)
=

∑

e1+···+ep=ℓ

(−1)ℓ−p

p
∏

s=1

(es − 1)!
∑

ζ

(
⊕

k∈π1

nk

)

. . . ζ




⊕

k∈πp

nk



 ∈ Qπm

where the sum in the right is taken over all the possible unordered partitions of the set

{1, . . . , ℓ} into p subsets π1, . . . , πp with e1, . . . , ep elements respectively.

Proof. When all the arguments n1, . . . , nℓ are positive the lemma becomes [9, Theorem

2.2]. Its proof there can be used here almost word for word. Notice that [9, Theorem

2.2] is re-proved as [15, Proposition 9.4] whose proof is different from that of [9] but

also works here. Thus we leave the details to the interested reader. �

Theorem 8.2. Let r be a positive integer, and e1, . . . , e2r+1 nonnegative integers.

(i) Put m = e1 + · · ·+ e2r. Then we have
∑

τ∈S2r

ζ⋆({2}eτ(1), 3, {2}eτ(2), 1, {2}eτ(3), . . . , 3, {2}eτ(2r), 1) ∈ Q · π2m+4r.
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(ii) Put m = e1 + · · ·+ e2r+1. Then we have
∑

τ∈S2r+1

ζ⋆({2}eτ(1), 3, {2}eτ(2), 1, . . . , 3, {2}eτ(2n), 1, {2}eτ(2r+1)+1) ∈ Q · π2m+4r+2.

Proof. We start with (i) first. When r = 1 this follows quickly from (23) by stuffle

relation. For general r let aj = e2j and bj = e2j−1 for all j ≤ r and let Aj =

2ej + 2 for all j ≤ 2r . Then we can apply (21) of Theorem 5.2 to the string

s = ({2}b1, 3, {2}a1, 1, . . . , {2}br , 3, {2}ar , 1) and get

ζ⋆(s) =
∑

τ∈S2r

τ







∑

p∈Π(A1,...,A2r)

2ℓ(p)ζ(p)






.

Let A = (A1, . . . , A2r) and Pℓ(2r) be the set of all partitions of [2r] := {1, 2, . . . , 2r}

into ℓ consecutive subsets. If λ = (λ1, . . . , λℓ) ∈ Pℓ(2r) then we set λj(A) = (Ai)i∈λj
so

that the concatenation
⊔ℓ

j=1 λj(A) = A. Because of the permutation we see that

ζ⋆(s) =
∑

τ∈S2r

τ







2r∑

ℓ=1

2ℓ
∑

λ∈Pℓ(2r)

ζ
(
⊕ λ1(A), . . . ,⊕λℓ(A)

)







=
∑

τ∈S2r

τ







2r∑

ℓ=1

2ℓ

ℓ!

∑

λ∈Pℓ(2r)

∑

g∈Sℓ

ζ
(
⊕ λg(1)(A), . . . ,⊕λg(ℓ)(A)

)






,

where ⊕t is the ⊕-sum of all the components of t for any composition t. Hence Theo-

rem 8.2(i) follows readily from the Lemma 8.1 since all Aj ’s are even numbers.

Theorem 8.2 (ii) follows from Theorem 6.2 in a similar fashion so we leave the details

to the interested reader. �

Remark 8.3. We notice that in [23, Theorem 1.1] Yamamoto obtains a more precise

formula by using partial sums and generating functions:

∑

e0,e1,...,e2r≥0
e0+e1+···+e2r=m

ζ⋆({2}e0, 3, {2}e1, 1, {2}e2, 3, . . . , 3, {2}e2r−1, 1, {2}e2r)

=
∑

2i+k+u=2r
j+l+v=m

(−1)j+k

(
k + l

k

)(
u+ v

u

)(
2i+ j

j

)
βk+lβu+vπ

4r+2m

(2i+ 1)(4i+ 2j + 1)!
, (28)

where βn = (−1)n(2− 22n)B2n/(2n)!. It is possible to modify our proof of Theorem 8.2

to give this more quantified version.

9. More Conjetures of Imatomi et al.

The following results were first conjectured by Imatomi et al. [13, Conjecture 4.5].

Theorem 9.1. Let m and n be two nonnegative integers.
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(i) We have

ζ⋆({2}n, 3, {2}m, 1) + ζ⋆({2}m, 3, {2}n, 1) = ζ⋆({2}n+1)ζ⋆({2}m+1).

(ii) We have

(2n+ 1)ζ⋆({3, 1}n, 2) =
∑

j+k=n

ζ⋆({3, 1}j)ζ⋆({2}2k+1).

(iii) If n ≥ 1 then we have

∑

e1+e2+···+e2n=1
e1,e2,...,e2n≥0

ζ⋆({2}e1, 3, {2}e2, 1, . . . , {2}e2n−1, 3, {2}e2n, 1)

=
∑

j+k=n−1

ζ⋆({3, 1}j, 2)ζ⋆({2}2k+2).

Proof. (i). This follows immediately from (4) and (23).

(ii). We notice that by taking ai = bi = 0 and ci = 3 for all i ≤ r = j in Theo-

rem 5.1(2-c-2-1) we get

ζ⋆({3, 1}j) =
∑

p2j∈Π({2}2j)

2ℓ(p2j)ζ(p2j).

All of the components aj of 2 ◦ · · · ◦ 2 must satisfy the following sign rule:

aj > 0 if and only if 4|aj . (29)

On the other hand, by Theorem 6.1(2-c-2-1-2) we have

ζ⋆({3, 1}n, 2) =
∑

p2n+1∈Π({2}2n+1)

2ℓ(p2n+1)ζ(p2n+1).

Hence by (4) we need to show that

∑

p2n+1∈Π({2}2n+1)

2ℓ(p2n+1)ζ(p2n+1) =

n∑

j=0

∑

p2j∈Π({2}2j )

2ℓ(p2j)ζ(p2j) · 2ζ(4(n− j) + 2). (30)

Suppose an index in p2j has length t + 1 (0 ≤ t ≤ 2n) given as

(a1, . . . , at+1), ai ∈ Z∗ ∀i = 1, . . . , t+ 1.

We now show that there are exactly 2t(2n+ 1) copies of such term produced by stuffle

product on the right hand side of (30). Indeed, for each i = 1, . . . , t + 1 the entry ai
has two possibilities:

(1). ai = 4bi > 0. Then for each k = 1, . . . , bi we may produce such a term on the

right hand side of (30) by stuffing

2tζ(a1, . . . , ai−1, 4k − 2, ai+1, . . . , at+1)
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from p2j having length t + 1 with the term 2ζ(4(bi − k) + 2) at the right end of (30).

Notice no shuffle is possible since 4(n − j) + 2 is not a multiple of 4. Hence these

contribute to 2t+1bi = 2t−1ai copies of ζ(a1, . . . , at+1).

(2). ai = 4bi + 2. Then for each k = 1, . . . , bi we may produce such a term on the

right hand side of (30) by stuffing

2tζ(a1, . . . , ai−1, 4k, ai+1, . . . , at+1)

from p2j having length t + 1 with the term 2ζ(4(bi − k) + 2) at the right end of (30).

Further, there is exactly one possible shuffle given by

2t−1ζ(a1, . . . , ai−1, ai+1, . . . , at+1)x
{
2ζ(4bi + 2)

}
,

since the index (a1, . . . , ai−1, ai+1, . . . , at+1) has only length t. Altogether these produce

2t+1bi + 2t = 2t−1|ai| copies of ζ(a1, . . . , at+1).

By combining (1) and (2) we see that the right hand side of (30) produces exactly

t+1∑

i=1

2t−1|ai| = 2t−1 · |(a1, . . . , at+1)| = 2t(2n+ 1)

copies of ζ(a1, . . . , at+1) since the weight is 4n+ 2. This proves (ii).

(iii). We use the same analysis as above and see that we need to prove the following

identity:

∑

q2n

2ℓ(q2n)ζ(q2n) =

n−1∑

j=0

∑

p2j+1∈Π({2}2j+1)

2ℓ(p2j+1)ζ(p2j+1) · 2ζ(4(n− j)), (31)

where q2n runs through all indices of the form A1 ◦ · · · ◦ A2n with one of the Aj’s (say

Aj0) equal to 4 and all the other Aj’s equal to 2. For each choice of 2tζ(a1, . . . , at+1)

with length t + 1 from the left hand of (31), all but one of the argument components

a1, . . . , at+1 must satisfy the sign rule (29). The only exceptional component, say ai,

must involve a merge with the special entry Aj0 = 4. Now there are two possibilities:

(1). ai = 4bi + 2 > 0. Then for each k = 0, . . . , bi − 1 we may produce such a term

on the right hand side of (31) by stuffing

2tζ(a1, . . . , ai−1, 4k + 2, ai+1, . . . , at+1)

from p2j+1 having length t + 1 with the term 2ζ(4(bi − k)) at the right end of (31).

Notice no shuffle is possible since 4(n− j) is a multiple of 4. Hence these contribute to

2t+1bi copies of ζ(a1, . . . , at+1). On the left hand side, such a term must be produced

by setting all 2bi − 1 consecutive ◦’s around Aj0 = 4 to ⊕:

. . . , Ai ⊕ Ai+1 ⊕ · · · ⊕ Aj0 ⊕ · · · ⊕Aℓ
︸ ︷︷ ︸

2bi entries

, . . . .

But Aj0 can be at any one of the 2bi possible positions, thus producing 2t+1bi copies of

ζ(a1, . . . , at+1) which match exactly the right hand side of (31).
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(2). ai = 4bi. Then for each k = 1, . . . , bi − 1 we may produce such a term on the

right hand side of (31) by stuffing

2tζ(a1, . . . , ai−1, 4k, ai+1, . . . , at+1)

from p2j having length t + 1 with the term 2ζ(4(bi − k)) at the right end of (31).

Further, there is exactly one possible shuffle given by

2t−1ζ(a1, . . . , ai−1, ai+1, . . . , at+1)x
{
2ζ(4bi)

}
.

Hence these contribute to 2t+1(bi − 1) + 2t = 2t(2bi − 1) copies of ζ(a1, . . . , at+1).

Similar to (1), on the left hand side, such a term must be produced by setting all 2bi−2

consecutive ◦’s around Aj0 to ⊕. And Aj0 can be at any one of the 2bi − 1 possible

positions, thus producing 2t(2bi − 1) copies of ζ(a1, . . . , at+1) which match exactly the

right hand side of (31).

This concludes the proof of theorem. �

Note that Theorem 9.1(i) is the more precise version of the n = 1 case of Theo-

rem 8.2(i). And Theorem 9.1(iii) can be written more compactly as

ζ⋆
(
{2}x{3, 1}n

)
=

n∑

k=0

ζ⋆({3, 1}n−k, 2)ζ⋆({2}2k),

which is the more precise version of the m = 1 case of the following result of Kondo et

al. [14]: For all nonnegative integers m and n we have

ζ⋆({2}m x{3, 1}n) ∈ Qπ2m+4n.

The case m = 0 case has the following precise formulation by Muneta [17]:

ζ⋆
(
{3, 1}n) =

n∑

i=0

{
2

(4i+ 2)!

∑

n0+n1=2(n−i)
n0,n1≥0

(−1)n1
(22n0 − 2)B2n0

(2n0)!

(22n1 − 2)B2n1

(2n1)!

}

π4n.

Muneta also found precise form in case m = 1. Of course, these are all special cases of

Yamamoto’s general formula (28).

10. MHS: 1-c-1 formula

In this section we turn to MHS of the type 1-c-1 where the trailing 1 may be vacuous

and the c’s may be any positive integers (which is different from the requirement c ≥ 3

in the previous sections). The corresponding MZSVs diverge when the leading 1 is

non-empty, however, in a sequel to this paper we will study the congruence properties

of MHS where the results of this section will be utilized.

The following theorem generalizes [7, Theorem 2.2]. For s = (s1, . . . , sm) ∈ (Z∗)m we

define

~n(s) :=
∑

n≥k1>···>km≥1

(
n

k1

) m∏

j=1

sgn(sj)
kj

k
|sj |
j

=

n∑

k=1

sgn(s1)
k

k|s1|

(
n

k

)

Hk−1(s2, . . . , sm).
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Theorem 10.1. Let r ∈ N and s = ({1}a1, c1, . . . , {1}
ar , cr, {1}

t) where t, aj ∈ N0 and

cj ∈ N for all j ≥ 1. Then

H⋆
n(s) = −

∑

p∈Π(a1+1, {1}c1−2, a2+2, ..., ar+2, {1}cr−2, t+1)

~n(p). (32)

Proof. When n = 1 it is clear that both sides in (32) are equal to 1. We proceed by

induction on n + r. By definition

H⋆
n(s) =

a1∑

l=0

1

na1−l
H⋆

n−1({1}
l, c1, . . . , {1}

ar , cr, {1}
t)

+
1

na1+c1
H⋆

n({1}
a2, c2, . . . , {1}

ar , cr, {1}
t).

For ease of reading we define the following index sets: for any composition v of integers

I(v) =Π(v, {1}c1−2, a2 + 2, {1}c2−2, . . . , ar + 2, {1}cr−2, t+ 1),

J =Π(a2 + 1, {1}c2−2, a3 + 2, . . . , ar + 2, {1}cr−2, t + 1).

By induction assumption

H⋆
n(s) = −

a1∑

l=0

1

na1−l

∑

q∈I(l+1)

~n−1(q)−
1

na1+c1

∑

p∈J

~n(p)

= −
∑

(q1,...,qm)∈I(1)

a1∑

l=0

1

na1−l

n−1∑

k=1

sgn(q1)
k

kl+|q1|

(
n− 1

k

)

Hk−1(q2, . . . , qm)−
1

na1+c1

∑

p∈J

~n(p).

By changing the order of summations and using the identity

a1∑

l=0

(n

k

)l

=
1

ka1
·
na1+1 − ka1+1

n− k

we see easily that

H⋆
n(s) =−

∑

(q1,...,qm)∈I(1)

n∑

k=1

(

1−
ka1+1

na1+1

)sgn(q1)
k

ka1+|q1|

(
n

k

)

Hk−1(q2, . . . , qm)

−
1

na1+c1

∑

p∈J

~n(p).

Observe that the index set

I(1) =
⋃

(p1,...,pm)∈J

{(
1 ◦ 1 ◦ · · · ◦ 1
︸ ︷︷ ︸

c1−2 times

◦(p1 + 1), p2, . . . , pm
)}

. (33)

For each (p1, p2 . . . , pm) we can partition the set (33) into the following subsets:
{(

c1 + p1,v
)}

∪
{(

j + 1,y, i+ p1,v
)}

, v = (p2, . . . , pm),
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for i ≥ 1, j ≥ 0 and positive compositions y with i+ j + |y| = c1 − 1. Thus it suffices

to prove that

∑

i+j+|y|=c1−1,
i≥1,j≥0

n∑

k=1

Hk−1(y, i+ p1)
(
n

k

)

(−1)kkj
=

1

nc1−1

n∑

k=1

(−1)k
(
n

k

)

kp1
−

n∑

k=1

(−1)k
(
n

k

)

kc1−1+p1
. (34)

Equation (34) follows from (8) of Lemma 3.1 when m = 1, A
(1)
n,k as in Remark 3.2,

c = c1 − 1, a = p1, x = (y, i + p1) and v = ∅. This completes the proof of our

theorem. �

For example, when r = 1 we recover [7, Theorem 2.2] and when r = 2 we get for all

a1, a2, t ∈ N0 and c1, c2 ∈ N

H⋆
n({1}

a1 , c1, {1}
a2, c2, {1}

t) = −
n∑

k=1

(−1)k
(
n

k

)

ka1+c1+a2+c2+t

−
∑

i2+j2+|x2|=c2,
i2,j2≥1

n∑

k=1

Hk−1(x2, i2 + t)
(
n

k

)

(−1)kka1+c1+a2+j2
−

∑

i1+j1+|x1|=c1,
i1,j1≥1

n∑

k=1

Hk−1(x1, i1 + a2 + c2 + t)
(
n

k

)

(−1)kka1+j1

−
∑

iα+jα+|xα|=cα,
iα,jα≥1, α=1,2

n∑

k=1

Hk−1(x1, i1 + a2 + j2,x2, i2 + t)
(
n

k

)

(−1)kka1+j1
.

11. Concluding Remarks

There are many recent studies on MZVs, MZSVs and even their q-analogs. Most of

the MZSV relations in [11] and [12] involving special types of arguments like ours in

this paper can be proved in a more straight-forward manner using our results. However,

it seems that the techniques contained here are hard to generalize to deal with MZVs

even though these two types of values are extremely closely related from the point of

view of their algebraic structures (see [10, 12, 18, 20]). Such a generalization should

help us resolve more conjectures such as those listed in [2, §7.2].

There are three more directions of research that should be of great interest. One is a

theory generalizing the MHS identities obtained in this paper to truly alternating ones.

We are aware of only one such instance. Setting x = 0 and x = 1 in [22, Lemma 5.4]

we get

H⋆
n({1}

a, 1) =

n∑

k=1

(2k − 1)(−1)k

ka+1

(
n

k

)

∀a ∈ N0.

Another direction is to establish a corresponding theory for multiple q-zeta values [4, 28].

Initial computations show it is quite a promising project, see [6, 8].

As for the third direction we notice that the many MHS identities proved in this paper

can be used not only to derive MZSV identities but also to prove many congruences
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of MHS. This idea has already been carried out in [7] to prove one of our conjectures

from [29]. In general, these congruences should shed more light on the unsolved [31,

Conjecture 2.6] and the conjectures at the end of [29]. This will be done in a sequel to

this paper.

References

[1] S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple zeta-functions and

their values at non-positive integers, Acta Arithmetica 98 (2001), pp. 107–116.

[2] J.M. Borwein, D.M. Bradley and D.J. Broadhurst, and P. Lisonek, Combinatorial aspects of

multiple zeta values, Electron. J. Combin. 5 (1998), R38.

[3] J.M. Borwein, P. Lisonek and P. Irvine, An interface for evaluation of Euler sums, available online

at http://oldweb.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi

[4] D. M. Bradley, Multiple q-zeta values, J. of Algebra 283 (2005), pp. 752–798.

[5] L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol. 20 (1775),

pp. 140–186; reprinted in Opera Omnia, Ser. I, vol. 15, B. Teubner, Berlin, 1927, pp. 217–267.

[6] Kh. Hessami Pilehrood, T. Hessami Pilehrood, On q-analogues of two-one formulas for multiple

harmonic sums and multiple zeta star values, arXiv:1304.0269

[7] Kh. Hessami Pilehrood, T. Hessami Pilehrood and R. Tauraso, New properties of multiple har-

monic sums modulo p and p-analogues of Leshchiner’s series, to appear in Trans. Amer. Math.

Soc., DOI: http://dx.doi.org/10.1090/S0002-9947-2013-05980-6, arXiv:1206.0407

[8] Kh. Hessami Pilehrood, T. Hessami Pilehrood and J. Zhao, On q-analogues of some identity

families for multiple harmonic sums and multiple zeta star values, arXiv: 1307.7985

[9] M.E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), pp. 275–290.

[10] M. Hoffman and K. Ihara, Quasi-shuffle products revisited, Max Planck Institute for Mathematics

preprint 2012 (16).

[11] M. Igarashi, Note on relations among multiple zeta-star values. arXiv: 1106.0481

[12] K. Ihara, J. Kajikawa, Y. Ohno and J. Okuda, Multiple zeta values vs. multiple zeta-star values,

J. Algebra 332(1) (2011), pp. 187–208.

[13] K. Imatomi, T. Tanaka, K. Tasaka and N. Wakabayashi, On some combinations of multiple zeta-

star values. arXiv:0912.1951.

[14] Y. Kondo, S. Saito and T. Tanaka, The Bowman-Bradley theorem for multiple zeta-star values,

J. Number Theory 132(9) (2012), pp. 1984–2002.

[15] N. Kurokawa, M. Lalin, and H. Ochiai, Higher Mahler measures and zeta functions, Acta Arith.

135(3) (2008), pp. 269–297.

[16] E. Linebarger and J. Zhao, A family of multiple harmonic sum and multiple zeta star value

identities, to appear in Mathematika, arXiv:1304.3927.

[17] S. Muneta, On some explicit evaluations of multiple zeta-star values, J. Number Theory 128(9)

(2008), pp. 2538–2548.

[18] S. Muneta, Algebraic setup of non-strict multiple zeta values, Acta Arith. 136(1) (2009), pp. 7–18.

[19] Y. Ohno and W. Zudilin, Zeta stars, Commun. Number Theory Phys. 2 (2008), pp. 325–347.

[20] T. Tanaka and N. Wakabayashi, An algebraic proof of the cyclic sum formula for multiple zeta

values, J. Algebra 323(3) (2010), pp. 766–778.

[21] K. Tasaka and S. Yamamoto, On some multiple zeta-star values of one-two-three indices. arxiv:

1203.1115.

[22] R. Tauraso, J. Zhao, Congruences of alternating multiple harmonic sums, J. Comb. and Number

Theory 2(2) (2010), pp. 129–159. arXiv:0909.0670



22 JIANQIANG ZHAO

[23] S. Yamamoto, Explicit evaluation of certain sums of multiple zeta-star values, arXiv:1203.1111.

[24] S. Yamamoto, Interpolation of multiple zeta and zeta-star values, arXiv:1203.1118.

[25] D. Zagier, Values of zeta functions and their applications, in: First European Congress of Math-

ematics (Paris, 1992), vol. II, A. Joseph et. al. (eds.), Birkhäuser, Basel, 1994, pp. 497–512.
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